저탄소 녹색성장을 위한 글로벌 항만의 과제

Issues of Global Ports for Low Carbon and Green Growth
• Organizing Committee

○ Honorary Chairmen
 - Mr. JEONG Jong-hwan, Ministry of Land, Transport and Maritime Affairs
 - Mr. PARK Joon-yung, Governor of Jeollanam-do Province
 - Mr. WOO Yoon-keun, Member of Korean Nat'l Assembly
 - Mr. SAKONG Il, CEO of Korea International Trade Association
 - Mr. PARK Hyun-kyu, Honorary President of Korean Association of Shipping & Logistics

○ Conference Chairmen
 - Dr. LEE Sung-woong, Mayor of Gwangyang City
 - Mr. LEE Sang-jo, President of Korea Container Terminal Authority
 - Mr. BU Won-chan, Administrator of Yeosu Regional Maritime Affairs and Port Office
 - Mr. CHOI Jong-man, Commissioner of GPEZ
 - Mr. SONG Young-seo, President of Suncheon SGCCI
 - Mr. HA Yeong-seok, President of Korean Association of Shipping & Logistics

○ Advisory Group
 - Mr. JANG Myeong-wan, Chairman of Gwangyang City Council
 - Mr. JUNG Chul-ki, Jeollanam-do Investment Advisory
 - Mr. LEE Sun-jung, KILC Chief of KITA
 - Mr. KIM Jin-Il, CEO of Korea Integrated Logistics Association

○ Convenors
 - Mr. LEE In-gon, Director General of Jeollanam-do Province
 - Mr. HAN Jong-ik, General Secretary of KASL

○ Coordinators
 - Mr. LEE Young-jin, Manager of Jeollanam-do Province
 - Mr. YOON Young-hak, Director of Gwangyang City
 - Mr. BANG Ki-tae, Manager of Gwangyang City
 - Mr. SONG Te-bek, Team Leader of GPEZ
 - Mr. BAE Cheol-su, Manager of Yeosu Regional Maritime Affairs and Port Office
 - Mr. OH Gun-rok, Manager of SGCCI
 - Mr. PARK Young-jong, General Manager of KCTA
 - Ms. JO Ree-rye, Manager of KCTA
 - Dr. HUI Moon-ku, Director of KILC
 - Dr. K Jong-soon, Vice-President of KASL

○ Secretaries
 - Mr. LEEM Chae-ki, Assistant director of Gwangyang City
 - Mr. JEONG Chun-ki, Senior staff
 - Mr. KIM Sung-june, Director of KASL
 - Mr. KIM Hyun-duk, Director of KASL
 - Mr. JO Hyuk-su, Director of KASL
Program
The 6th Int'l Gwangyang Port Forum and
The 3rd Int'l Conference of the Asian Journal of Shipping & Logistics

- Date: 20th – 23rd April, 2010
- Venue: Grand Conference Hall, 2nd floor, World Marine Center, in Gwangyang

20th April, Tuesday
Invited Foreign Guests arrive in Gwangyang, Korea
1830 Welcoming Dinner Party hosted by Mr. CHOI Jong-man, Commissioner of GFEZA
(Venue: Backwoondae)

21st April, Wednesday
MC: Mr. CHON In-seok (Announcer of KBS)
1030 – 1100 Opening Performance: Beokunori (Korean Drum Play) & B-Boy Performance
1100 Opening Address by President of KASL
1110 Welcoming Address by Vice Governor of Jeonnam Province
1120 Congratulatory Address by Minister of MLTM
1130 Keynote Speech by Mayor of Gwangyang City
1200 Luncheon hosted by President of KCTA (Venue: 19th Floor) only for Invited Guests.
- Ordinary Participants are invited to have lunch at Restaurant in underground.

Main Issue I: Issues of Global Ports for Low Carbon and Green Growth
Venue at Grand Conference Hall, 2nd Floor

Chairman: Dr. BANG Hee-seok (Prof. of Chungang Univ.)

1330 – 1400 Dr. Soner Estner, Ismail Bilge Cetin, Okan TUNA (Dokuz Eylul University)
- The Role of Lean and Green Ports in Global Supply Chains: A Simulation for a Turkish Port
Commentator: Dr. PARK Gyei-kark (Prof. of MMU)

1400 – 1430 Dr. HAN Chul-hwan (Prof. of Dongsseo Univ.)
- World Major Ports’ Clean Air Strategy and Its Implications for Korean Ports
Commentator: Dr. HWANG Jin-hoii (Senior Research Fellow of KMI)

1430 – 1445 coffee break

Chairman: Dr. SEO Jung-soo (Prof. of Keimyung Univ.)

1445 – 1515 Dr. led J.C. LIRN (Prof. of Taiwan Ocean Univ.)
- The study on the ecological ports’ performance index
Commentator: Dr. PARK Hong-gyun (Prof. of Sunchon Nat’l Univ.)
The Role of Lean and Green Ports in Global Supply Chains:
A Simulation for a Turkish Port

Soner ESMER*, Ismail Bilge ÇETİN*, Okan TUNA*

Abstract

Ports, from the simple physical sea/land interface they once used to be, have successively turned into commerce and industrial centers, then into logistics and distribution platforms, and are now becoming intermodal nodes in international supply chains networks, the efficiency of which now drives trade competitiveness. On the other hand, Turkey, with her distinguished location being very close to European markets, North Africa, Middle East and Central Asia and with her logistics infrastructure and well qualified manpower, has the potential of being a hub country in her region. However, in order to achieve this potential, Turkish ports have to consider both lean and green approaches in their business strategies. A simulation model has been used to determine the optimum number of terminal trucks (MTT) to increase the lean capabilities of a Turkish port and the environmental damage caused by terminal trucks (MTT) in cargo handling operations has been discussed through the study.
1. INTRODUCTION

Ports are of critical importance to the logistics as the nodal points in terms of connecting sea with surface transport modes (Tuna, 2002). The port services may be regarded as a chain of interlinking functions, while port as a whole is in turn a link in the overall logistics chain (Suykens and Van De Voorde, 1998). Ports, from the simple physical sea/land interface they once used to be, have successively turned into commerce and industrial centers, then into logistics and distribution platforms (third generation ports), and are now becoming intermodal nodes in international supply chains networks, the efficiency of which now drives trade competitiveness (World Bank, 2002). Marlow and Casaca supported this fact with the agility concept and described the ports as transport solution providers (fourth generation ports) (Marlow and Casaca, 2003). Ports are expected to be not just a transferring point between different modes but an integrated logistics center in the seamless transport chain (Inoue, 2002). Hence, supply chain orientation is necessary for the facilitation of the port and terminal functions required for servicing the needs and demands of the users and for achieving port competitiveness (Tongzon et al., 2009).

Although the ports are considered as the nodal points within the supply chains, they have also their internal supply chains producing value-adding functions. Receiving of the goods, giving value-adding functions such as container freight station (CFS) services, product mixing, postponement, cross-docking, consolidation-deconsolidation of the cargoes and delivering of the goods can be regarded as the processes of the internal supply chains of ports.

On the other hand, increasing sustainable logistics initiatives are becoming another challenging issue for the ports. Although in-port emissions make up a small percentage of the overall emissions from shipping, ports attract shipping traffic and inevitably constitute sources (points) of concentrated ship exhaust emissions (Tzannatos, 2010). Hence, green approaches are required by both legislations (international/national) and customers for the sake of lower greenhouse gas emissions.

Considering the new role of ports within the framework of supply chain concept, changing expectations of shippers in terms of customer service and costs, and challenging sustainable logistics initiatives, ports need to apply lean and green strategies.

Applying lean and green strategies are inevitable for the Turkish ports. As far as the Turkey’s land-bridge position in global supply chains is considered, ports have the vital importance on the efficiency of logistics activities of Turkey. Although Turkey has a strategic position in terms of logistics and shipping, Turkish ports have insufficient capacity in terms of infrastructure, superstructure, equipment etc. for transit cargoes, so they hardly
2. LEAN AND GREEN APPROACHES IN PORTS

Taichi Ohno defined seven common forms of waste, activities that add cost but no value: production of goods not yet ordered; waiting; rectification of mistakes; excess processing; excess movement; excess transport; and excess stock (Jones and Hines, 1997). Lean supply chain strategies focus on waste reduction, helping firms eliminate non-value adding activities (Corbett and Klassen, 2006). Such strategies enable firms to improve quality, reduce costs, and improve service to customers as traditional batch and queue mass production and supply chain approaches are transformed (Larson and Greenwood, 2004). Lean approaches can be categorized as “push-pull”, “postponement”, “six sigma”, and “JIT” in various studies (Mollenkopf et al., 2010). Lean practices are becoming increasingly difficult to implement and sustain as supply chains increase in complexity and length.

As already mentioned, ports turned into transport solution providers and agile logistics applications are the focal point of the effectiveness and efficiency of the ports. It is inevitable for ports to apply lean approaches to become more agile in the transport chain. By using lean production theory, a whole range of benefits such as reduced customer lead-times, steady or reducing prices, increased market share, reduced time to launch new services, increased service diversity, productivity and profit can all be achieved (Paixao and Marlow, 2003).

A lean port is a business unit, which makes effective use of its available resources (tangible and intangible assets and capabilities) and, by eliminating all port wastes along the physical and informational flows of the processes, achieved superior customer service in the provision of transport solutions (Paixao and Marlow, 2003).

Needless to say, streamlining flows is seen as crucial step towards making ports both more effective and efficient. Hence, the implementation of agility in ports supports itself on the concepts of lean, flexibility, just-in-time and business process redesign. The challenge for a lean port is to move cargo quickly and smoothly delivering a service in alignment with market demand while eliminating waste within the processes (Marlow and Casaca, 2003).

Green supply chain strategies refer to efforts to minimize the negative impact of firms and their supply chains
on the natural environment. In the wake of concerns regarding climate change, pollution, and non-renewable resource constraints, firms are heeding stakeholder demands regarding corporate citizenship behavior and performance (Sarkis, 2001; deBurgos Jimenez and Ce'spedes Lorente, 2001). A green supply chain focus requires working with suppliers and customers, analysis of internal operations and processes, environmental considerations in the product development process, and extended stewardship across products' life-cycles (Corbett and Klassen, 2006; Mollenkopf, 2006).

Logistics and supply chain managers have to balance efforts to reduce costs and innovate while maintaining good environmental (ecological) performance (Pagell et al., 2004). Green supply chain management has emerged as an approach to balance these competitive requirements (Narasimhan and Carter, 1998).

Ships with huge engines running on bunker fuel without emission controls, thousands of diesel trucks per day, diesel locomotives, and other polluting equipment and activities at modern seaports cause an array of environmental impacts that can seriously affect local communities and marine and land-based ecosystems throughout a region (Bailey and Solomon, 2004). The major air pollutants related to port activities that can affect human health include diesel exhaust, particulate matter (PM), volatile organic compounds (VOCs), nitrogen oxides (NOx), ozone, and sulfur oxides (SOx). Other air pollutants from port operations, such as carbon monoxide (CO), formaldehyde, heavy metals, dioxins, and pesticides used to fumigate produce, can also be a problem (Bailey and Solomon, 2004).

3. ROLE OF TURKEY IN GLOBAL SUPPLY CHAINS

Since 1990s there has been an important change in shipping and ports. The main belief behind this change is the increased acceptance of international trade as the primary engine of economic growth and development. This has been an ideological shift, as many economies including the Asian giants of China and India have in the past pursued development strategies that have emphasized self-sufficiency and import substitution (UNESCAP, 2007). Recently however, there has been a growing consensus that success will be achieved through global economic integration. As a result of this globalization trend, world trade volume has continued to grow with the gradual removal of trade barriers under the World Trade Organization (WTO), and through Regional Trade Agreements (RTA) (UNESCAP, 2007).

While the trade is growing year by year, the direction of the trade is also changing due to the above mentioned
points. The developments in China and India have changed the direction of the trade from eastward to westward. Turkey, being on the trade route between Asia and Europe, has directly been affected by the developments going on around her. Removing trade barriers and being a member of EU Customs Union and some economical decisions made by Turkish government has made Turkey an important player.

Turkey is now not only a good market for both Europe and Asia but also can act as a logistics hub for the finished products and semi-finished products that need to assembled prior to entering into the European Union and other countries around her. Due to her location Turkey has also potential of being a transshipment point for the cargoes distributed to the countries around her.

3.1. Role and Place of Turkey in the Global Cargo Traffic Flows

The process of globalization and liberalization of national economies has greatly enhanced the scope for intraregional and interregional trades. Of course, the importance of transportation in acceleration of globalization cannot be denied. Like other countries, Turkey has also been affected from the changes occurring around her. In terms of transportation and trade, Turkey now has a potential of being hub country in her region with the transportation corridors passing on and around.

Turkey is located between Asia and Europe and several existing and planned transport corridors pass on and around Turkey (See Figure 1). The connection of Turkey with Asian countries is supplied through Trans Asian Southern railway corridor, Asian Highway network and TRACECA corridor. While one leg of TRACECA corridor passes through Turkey and connects Europe and Asia, southern railway route and Asian Highway network passes across Turkey on East-West direction and joins with European Transport Network system through Pan European Transport Corridor number IV.

In Euro-Asian Transport Corridor projects, there are also two important projects. Although they are not passing through Turkey, they affect the competitiveness of Turkey being a logistics hub in her region. These projects are Transsiberian and North-South corridors projects. These four major Euro-Asian transport corridors have been determined as major transport links connecting Asia and Europe. The routes on Euro-Asian Transport Corridor projects are based on existing European and Asian transport Networks and corridors and these existing networks and corridors are given in Figure 1 separately. The new project and the routes are as follows (UNECE/UNESCAP, 2006):
1. Transsiberian corridor: Europe (PETCs 2, 3 and 9) – Russian Federation – Japan, with branches from the Russian Federation to:
 a. Kazakhstan – China and Korean peninsula
 b. Mongolia – China;

2. TRACECA corridor: Eastern Europe (PETCs 4, 7, 8, 9) – across Black Sea – Caucasus – across Caspian Sea – Central Asia;

3. Southern corridor: South-eastern Europe (PETC 4) – Turkey – Islamic Republic of Iran, with branches from Iran to:
 a. Central Asia – China
 b. South Asia – South-East Asia/Southern China;

4. North-South corridor: North Europe (PETC 9) – Russian Federation, with branches to:
 a. Caucasus – Persian Gulf
 b. Central Asia – Persian Gulf
 c. Across the Caspian Sea – Islamic Republic of Iran – Persian Gulf.

Figure 1 Transport Corridors Passing on and Around Turkey

In Euro-Asian Transport Corridor projects, there are nine railway and seven road routes. While some of the routes are included into the four main corridors, some of them are kept separately. In Euro-Asia Transport corridor project, the railway routes passing through Turkey are Rail Route No.4 and the road routes passing through Turkey are Road Routes No: 5.

Beside the land and intermodal corridors, Turkey, with her seaports, acting as the gateway to the landlocked Middle Asian countries and Middle East countries, has direct connection to Asia–Europe major sea corridors passing through Mediterranean sea (see Figure 2).

With her connection to main sea corridors, Turkey is not only an important player in PETRA and TRACECA projects, she is also a hub point among Mediterranean, East European, Black Sea, Central Asian and Middle East countries.

<Figure 2> Asia – Europe Sea Corridor and Position of Turkey
3.2. The Potential of Turkey in Global Supply Chains

Increasing trade volume between Asia and Europe and Black Sea countries has urged to have a logistics hub to distribute the finished products to these countries. Turkey, with her distinguished location being very close to European markets, North Africa, Middle East and Central Asia and with her logistics infrastructure and well qualified manpower, has the potential of a hub country in her region. Turkey, also being in the intersection of transport corridor, has the potential of transshipment point in her region.

In terms of transportation infrastructure, Turkey has direct good road connections with the following European and Asian Networks: The Asian transport Networks namely Asian Highways (AH) and Trans Asian Railways (TAR) are direct connection to Turkey. Turkey is also a part of such European Networks and corridors as European Agreement on Main International Railway Lines (AGC), European Agreement on Main International Traffic Arteries (AGR), European Agreement on Important International Combined Transport Lines and Related Installations (AGTC), Trans European Motorways (TEM), Trans European Railways (TER), Pan European Transport Corridors (PETC), Transport Corridor Europe Caucasus and Asia (TRACECA), Pan European Transport Area (PETRA) (Cetin, 2008; 309). Although Turkey has good road infrastructure, her railway infrastructure is not satisfactory. Though Turkey cannot accept big sea vessels to her container ports due to their insufficient drift, she has quiet number of sea ports to handle the cargo. Many container lines currently calling Turkish container ports and bulk terminals are used to handle import and export bulk cargoes (Cetin, 2008).

3.3. The Role of Turkish Ports in Global Supply Chains

Turkey is a peninsula having 8,333 kms coastline and being surrounded by four seas; the Black Sea to the North, Marmara Sea to the north-west, the Aegean Sea to the west and Mediterranean Sea to the south. There are approximately 350 shore facilities including ports, piers, and yacht marinas and fishing shelters along this coastline. The ports and piers can be classified in terms of operation as follows:

- Ports and piers operated by public sector (Turkish State Railways – TCDD)
- Ports and piers operated by private sectors
- Ports and piers operated by regional municipalities.

Majority of the container ports are operated by private sector in Turkey. Table 1 analyzes the container throughput in both public and private ports. Ports in Marmara Sea have achieved significant amount of throughput
in 2009 due to the contribution of private ports. As far as the Mediterranean Sea is concerned, Port of Mersin is the leading port in the region. Container throughput is negligible in the ports of Black Sea.

As far as the developments in the world and Turkey are considered, container demand is expected to increase in Turkey. Majority of the container trade will be achieved within Marmara Sea, Aegean Sea, and Mediterranean Sea in the future.

<Table 1> Container Throughput in Turkish Container Ports (TEU)

<table>
<thead>
<tr>
<th>Region</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marmara Sea</td>
<td>859,644</td>
<td>720,603</td>
<td>997,910</td>
<td>1,252,936</td>
<td>1,159,358</td>
</tr>
<tr>
<td>Marport</td>
<td>438,849</td>
<td>531,528</td>
<td>666,684</td>
<td>649,466</td>
<td>476,513</td>
</tr>
<tr>
<td>Kumport</td>
<td>240,953</td>
<td>274,759</td>
<td>341,376</td>
<td>336,287</td>
<td>214,056</td>
</tr>
<tr>
<td>Gempor</td>
<td>158,099</td>
<td>194,282</td>
<td>276,270</td>
<td>359,684</td>
<td>200,159</td>
</tr>
<tr>
<td>Haydarpasa (Pubic Port)</td>
<td>340,629</td>
<td>400,067</td>
<td>400,000</td>
<td>356,272</td>
<td>187,365</td>
</tr>
<tr>
<td>Evrap</td>
<td>14,007</td>
<td>32,072</td>
<td>77,995</td>
<td>108,958</td>
<td>156,321</td>
</tr>
<tr>
<td>Borusun</td>
<td>90,513</td>
<td>94,772</td>
<td>114,522</td>
<td>145,189</td>
<td>146,240</td>
</tr>
<tr>
<td>Yildort</td>
<td>33,785</td>
<td>35,380</td>
<td>68,777</td>
<td>135,495</td>
<td>133,368</td>
</tr>
<tr>
<td>Redaport</td>
<td></td>
<td></td>
<td></td>
<td>21,809</td>
<td>84,653</td>
</tr>
<tr>
<td>Marmara Total</td>
<td>1,906,479</td>
<td>2,248,637</td>
<td>2,942,484</td>
<td>3,366,096</td>
<td>2,758,033</td>
</tr>
<tr>
<td>Aegean Sea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Izmir (Pubic Port)</td>
<td>784,377</td>
<td>847,926</td>
<td>898,217</td>
<td>884,966</td>
<td>826,645</td>
</tr>
<tr>
<td>Nemport</td>
<td></td>
<td></td>
<td></td>
<td>6,902</td>
<td></td>
</tr>
<tr>
<td>Tce-Ege</td>
<td></td>
<td></td>
<td></td>
<td>885</td>
<td></td>
</tr>
<tr>
<td>Aegean Total</td>
<td>784,377</td>
<td>847,926</td>
<td>898,217</td>
<td>884,966</td>
<td>834,432</td>
</tr>
<tr>
<td>Mediterranean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIP</td>
<td>596,289</td>
<td>643,749</td>
<td>782,028</td>
<td>854,600</td>
<td>843,917</td>
</tr>
<tr>
<td>Port Akdeniz</td>
<td>11,843</td>
<td>50,747</td>
<td>63,399</td>
<td>67,053</td>
<td>59,528</td>
</tr>
<tr>
<td>Mediterranean Total</td>
<td>608,132</td>
<td>683,996</td>
<td>845,427</td>
<td>921,653</td>
<td>903,445</td>
</tr>
<tr>
<td>Black Sea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trabzon</td>
<td>310</td>
<td>5,442</td>
<td>10,345</td>
<td>22,141</td>
<td>21,057</td>
</tr>
<tr>
<td>Turkey Total</td>
<td>3,299,298</td>
<td>3,786,001</td>
<td>4,696,473</td>
<td>5,194,856</td>
<td>4,516,967</td>
</tr>
</tbody>
</table>

Source: www.turkim.org
4. METHODOLOGY

This part of the study attempts to analyze a leading Turkish container terminal located in Marmara region considering the lean and green approaches.

4.1. Model of the Study

Paixao and Marlow proposed two major stages for the port integration (See Table 2). The first stage, embracing three phases, aims at putting ports to work in a just-in-time (JIT) environment to support lean production theory; whereas the second stage (embracing two phases) aims at implementing lean and agile theories in ports (Paixao and Marlow, 2003). First dimension of our model is based on the integral integration where effectiveness of the container terminal has been analyzed.

<Table 2> Stages and Phases of Port Integration

<table>
<thead>
<tr>
<th>Stages of integration</th>
<th>Phases of integration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal integration</td>
<td>1. Identification of the port's current and redesign of future processes</td>
</tr>
<tr>
<td></td>
<td>2. JIT preparation phase</td>
</tr>
<tr>
<td></td>
<td>3. The running of JIT operations phase</td>
</tr>
<tr>
<td>External Integration</td>
<td>4. The lean phase</td>
</tr>
<tr>
<td></td>
<td>5. The agile phase</td>
</tr>
</tbody>
</table>

Source: Paixao and Marlow, 2003

On the other hand, second variable of our model namely green dimension is based on three components; vessel operations, services given in marine facilities, and cargo handling operations at the terminal area. However, we only focused cargo handling operations in this study. Needless to say, to reach sustainable environment and minimize the damage made on the environment, ports have to minimize the activities polluting the atmosphere. Equipments used at container terminals are mostly operated by electric power. On the other hand, MTT’s which are used for inland cargo movement, especially between apron and storage areas in container terminal are generally motor vehicles. For this reason, reaching the optimal number of MTT in container operations is a basic point to minimize the damage on the environment.
4.2. Description of the Port

The pilot model of this research has been developed on the basis of the data gathered from a Turkey-based modern container port. The two factors that encourage the choice in favor of this particular port are as follows:

- The design of the terminal and the equipment being used there are quality as those available at the worldwide modern container terminals through which customer satisfaction and cost opportunity can be reached.
- Due to its critical location in terms of transshipment traffic for the Black Sea countries as well as the regional (Marmara Region) cargoes, the terminal is of great importance within both supply logistics and physical distribution.

Some further detailed specifications of the terminal chosen are as follows:

- It is the second largest terminal in Turkey in terms of having the capacity of handling the highest number of containers (1.5 million TEU/year),
- The SSG handling speed it can achieve in terminal operation is the best extend in Turkey,
- It’s one of the deepest container terminal in Turkey with a depth of 14.5 m.

The terminal, chosen for the above mentioned specifications, is different from the other container terminal located within the Marmara Region in terms of various aspects. The foremost difference is regarding the
operations in particularly. It is the first time in Turkey that a container terminal has been established through working on the infrastructure of the port. Not only is the infrastructure but also the superstructure the equipments in hand are directly intended for container handling. The terminal uses RTG handling system.

The container terminal chosen is not only the port of call of all the vessels providing intercontinental services but it is also a port convenient for transshipment activities. It has been well known for years that one of the shipping related problems of Turkey is that her share in transshipment traffic has been very little. Out of 1.2 million TEU transit TEU handled in 2008, a considerable amount of 732,000 TEU was handled by the container terminal chosen as a case for this research. This figure corresponds to 61 % of the total transit cargoes handled in Turkey. The number of containers handled at the mentioned terminal in 2008 is 1,252,936 TEU, which had been the highest number handled by one terminal in Turkey.

The only access to the hinterland is through highways. Despite this particular disadvantage, the port mentioned has managed to have gained a very important acceleration, becoming in a very short time one of the most important and most modernized container terminal in Turkey. Besides, the terminal chosen is located in Istanbul and quite close to Izmit city, both of which are the entrance to the Black Sea, is quite suitable for the biggest vessel sailing through the basic trade routes to choose the terminal as a transshipment point for their Black Sea cargoes. All in all, the terminal is of a great importance for the Marmara Region, the most important industry-involved region of Turkey, for it is chosen by mother ships as a port of call.

In the terminal chosen, sub-contractors provide container freight station (CFS) services. These services including yard cargo stuffing/unstuffing, customs inspection and sampling, and a full range of other services as needed. The terminal’s CFS has 4 main sections: warehouse and LCL (less than container load cargo) cargo, export and import containers, hazardous cargo and a covered area for weather-sensitive cargo. The terminals also provides warehousing and storage service for LCL cargo in 2,256 m2 warehouse area.

4.3. Simulation Method for Port Operations

Simulation is most often used method of the decision support system (Turban and Aronson, 1998). Simulation is a scientific instrument used in investigating analyzing the complex issue. By means of the simulation, the best alternative solutions to the problems of the modeled system can be chosen (Haasan et al, 1993).

A simulation is preferred in port operation issues, particularly in analyzing the terminal data and optimizing the
investment in port equipments (Hayuth, 1996). Simulating port processes can be utilized to reach such diverse objectives as port designing, port planning, increasing the port capacity and efficiency. In the analyses and planning of port operations, simulation models are widely preferred (Dragovic et. al, 2005). It has now definitely been proved that simulation models are highly practicable and reliable decision support instruments for the decision makers at ports.

An overall literature review reveals that most of the relevant researchers so far carried out are mainly about container terminal operating issues. The fact that container terminal operations are more complex than are the other cargo operations seems to have increased the interest in using simulation methods with the former. The literature review also reveals some common points of assessment with regard to container terminal simulation models. Some of these main points are that models support the decisions made by the port managers and that they evaluate diverse operation alternatives and also that they provide the port managers with a flexible device needed to access the most appropriate solutions (Esmer et al., 2008).

4.4. Methodology

The method used in this research is simulation and for modeling, ARENA 12.0 simulation software has been used.

The simulations models developed theoretically comprise such processes as cargo handling, intra port transportation and warehousing following the completion of the ship’s berthing activities. Therefore, the inputs of the model are the cargo (container) discharged, the infrastructure such as the berth used and the stowage area and the equipments used for such activities as loading, discharging, transporting (moving) and stowing. The cargoes handled at ports are exposed to three likely logistical processes such as:

- Cargo handling processes comprising either loading the cargoes on board or discharging the cargoes from the ship.
- Intra port movement which means the movement of the cargoes within the port.
- Warehousing and stowing.

The output gained through the model could be discussed in the following three categories:

- The data related with the total operation period,
- The data related with the period and utilization regarding the SSG (Ship to Shore Gantry) used for loading and discharging, the terminal tractor used for the transport at the terminal and RTG (Rubber Tired Gantry) used for warehousing/stocking the containers at the warehousing area.
• The data related with determining the bottlenecks to be encountered during such operations as loading, internal transport and warehousing.

Any manager who has analyzed these performance indicators will get able to see under that circumstances and how the logistics activities related with the cargo handling within the terminal, internal movement and warehousing will response and reach the process optimization through the assessment of these performances.

The quantitative approach based process was carried out basically within the frame of two simulation models, pilot model and universal model. The basic activities fulfilled with each of these models are briefed as follows:

Pilot Model: Designed to get prepared for the universal model; the modeled aspect are physical structure of the port involved the logistics process within the terminal and the equipments used at the terminal. The samples gathered in compliance with the data collection from developed, were checked through the model and the reliability and validity analyses of the model were carried out. The cargo handling structure the validity and reliability of which have been verified is “crane handling system” used at the leading container terminals in the world. The basic aspects of model are similar to those of all the world terminals except that the information related with the physical infrastructure and the equipment was adapted to the terminal involved in the research.

Universal Model: through the pilot project work at the port involved in the research, the validity and the reliability of the model has been verified. The difference to be noted with the universal model was that the data inputs related with the whole infrastructure and the equipment were made flexible and this becomes adoptable to all the ports in the world. Besides, through the scenarios formed, the container terminal processes were observed and scrutinized.

5. FINDINGS

5.1. The Pilot Model and Validity-Reliability Analysis

In the model of the port involved, there are 3 SSG in operation at the berth. The data collected from the port revealed that the container loading/discharging operations of the SSG was held on for about 24 hours. In other words, each movement of gantry crane completed in about 2,5 minutes.
Although the number of RTG available at the port is 18, the number of those active in operation is 16. The remaining 2 RTG are spare and put into operation when needed. According to the operator experiences, the speed rate at which the RTG's handle the container is about 15 movements per hour. In other words, each RTG completes its circle in around 4 minutes.

The number of the MTT's (Terminal Tractor) at the terminal is 35. In practice, however, the number of MTT per each SSG is 5. The speed of the MTT's within the terminal has been limited to be 20 km/h.

As a principle, in practice for 1 SSG, 5 MTT and 2 RTG are appointed. In such a case, therefore, for a ship on which 3 SSG are involved in operation, 15 MTT and 6 RTG are needed.

The simulation models are separately set so that each function is in full satisfaction. Through the pilot model the validity and reliability tests have been fulfilled using the loading-discharging operations data gained by means of the data collection form. At the experimental research carried out to measure the reliability and validity of the model a real ship operations was used. The details of the operations are as follows:

- The total number of container movements is 2157 and the number of containers processed is 2031. The difference, 126 movements, stands for the number of the containers lowered to the apron and then loaded on board the ship (63 discharged and 63 loaded).
- Out of 2157 movements, 1725 is discharged, and 432 loaded.
- Three SSG's were appointed for the ship.

The model got operated 10 times and the total operation period was compared with those displayed in the following Table 3.

<table>
<thead>
<tr>
<th></th>
<th>SSG 1</th>
<th>SSG 2</th>
<th>SSG 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Real</td>
<td>Sim.</td>
<td>Real</td>
</tr>
<tr>
<td>Total operation time (hour)</td>
<td>34.9</td>
<td>34.8</td>
<td>34.7</td>
</tr>
<tr>
<td>Total movement (unit)</td>
<td>687</td>
<td>687</td>
<td>729</td>
</tr>
</tbody>
</table>

In Table 3, the total time of the operation, waiting time and time percentages provided from the statistical figures related with the operation of the each berth crane. The results gained from the model match these data.

The share of errors, deviations, between these two periods is less than 5%. The container appointments were
fulfilled at 100% match. Through such a pilot study, the validity and reliability of the model have been verified.

5.2. Experimental Studies

In order for the model to get a kind of international dimensions, the validity and reliability of which were analyzed and tested through pilot models, a new model was developed.

The model, developed to reach a flexible simulation model and on which a series of experiments have been carried out, involved a RTG handling system, a single handling line and 1 SSG along with 2 RTG simultaneously. Besides, on the number of the MTT used a great number of scenarios were tried. Furthermore, the model got operated at each experiment 1000 containers were sent to the system.

Table 4 indicates the inputs of the model experiments along with the relevant outputs. The main focus of such experiments was on the analysis of the effect of changes in the number of the MTT and the speed of the SSG.

As can seen in the Table 4 in the models the operation speed of RTG was limited to 15 movement per hour. This implies that at the limited speed, in every 4 minutes the RTG either stowed one container or got ready to load the container stowed to MTT. The reason why in the model the operation speed of the RTG was kept fixed is that the changes within this period have too little effects on the steady run of the system.

The findings of the experiments indicate that the changes in the handling speed of SSG and the number of MTT used in the internal transport have considerable effect on the performance of the system.
<table>
<thead>
<tr>
<th>MTT (min)</th>
<th>Average waiting time of arrived tasks</th>
<th>Number under queue</th>
<th>Average MTT</th>
<th>SSG utilization</th>
<th>RTG utilization</th>
<th>Operation speed (moves)</th>
<th>RTC handling</th>
<th>Number allocated</th>
<th>SSG handling</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>0.4</td>
<td>0.62</td>
<td>0.1</td>
<td>0.9</td>
<td>0.86</td>
<td>4</td>
<td>0.25</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>0.4</td>
<td>0.5</td>
<td>0.62</td>
<td>0.2</td>
<td>0.9</td>
<td>0.86</td>
<td>4</td>
<td>0.25</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>0.5</td>
<td>0.6</td>
<td>0.62</td>
<td>0.3</td>
<td>0.9</td>
<td>0.86</td>
<td>4</td>
<td>0.25</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>0.6</td>
<td>0.7</td>
<td>0.62</td>
<td>0.4</td>
<td>0.9</td>
<td>0.86</td>
<td>4</td>
<td>0.25</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>0.7</td>
<td>0.8</td>
<td>0.62</td>
<td>0.5</td>
<td>0.9</td>
<td>0.86</td>
<td>4</td>
<td>0.25</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

- Table 4: The Results of the Experimental Study
5.3. Results of model: Lean Dimension

Finding 1: the increase in the number of MTTs has no effect on the time of the end of the operation period that the speed of SSG is limited with 24 movement per hour. In other words, the increase in the number of MTTs has no effects on the period of operation.

Finding 2: the increase in the number of MTTs has no effect on the rate of efficient use of SSG. SSG is not affected by the changes in the 2-5 numbers of MTT nor is it affected by the changes in the speed of the SSG handling.

Finding 3: The increase in the number of MTTs appointed has effect on the waiting period of the MTTs in the system and also on decreasing effect on the RTG efficiency, which is indicated in Figure 4. As can be seen in figure 4, the optimal number of MTT, when 1 SSG and 2 RTG are used in the operations is 2.

This implies that the increase in the number of MTT has no effects on the time of the operation.

<Figure 4> the effects of the number of the appointed MTT on the RTG and MTT waiting period.
5.4. Results of the Model: Green Dimension

The number of work days in 2009 at the port involved in this research, due to certain national holidays and certain winds too strong to allow port operations, is 9. During the actual works day, 256 days corresponding to 8,544 hours, around 600 vessels were serviced at the port mentioned, which in turn corresponds to 14.2 hours of service per vessel (8,544/600). The vessels having called the sample port of this research, however, could not be serviced for about 18.66 % of the period during which they waited at the piers because of such unavoidable intervals as shift changes, opening and closing hatch covers, and having meals, etc. As a consequence, the net period of receiving services for each vessel throughout one year turns out to be around 11.6 hours (14.2 - (18.6 X 0.142)).

For each SSG at the involved in this research, 5 MTT where employed throughout one year. This means that throughout the average 11.6 hrs of ship servicing, 5 MTT were kept at work for a total 58 hours (11.6 h X 5 MTT). This figure corresponds to 34,800 hours for 600 vessels (600X58). In other words, the MTT’s serviced throughout one year for 34,800 hours.

This simulation model conducted has revealed that for the port chosen for this research the optimal number of MTT’s is 2. In case not 5 by 2 MTT’s are used for each SSG throughout the year, the total workload of MTT, according to the above stated calculation, would be 13,920 hours for one year. In such a case, then, there would be a decrease in the environmental damage displayed in Table 5.

<table>
<thead>
<tr>
<th>Table 5</th>
<th>Green Impact of the Simulation Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of MTT allocated</td>
</tr>
<tr>
<td>Real</td>
<td>5</td>
</tr>
<tr>
<td>Simulation</td>
<td>2</td>
</tr>
<tr>
<td>Differences</td>
<td>3</td>
</tr>
</tbody>
</table>

6. CONCLUSIONS AND IMPLICATIONS

This study has aimed to analyze a Turkish port both in lean and green dimensions. A simulation model has been applied. It has been found that changes in the handling speed of SSG and the number of MTT used in the internal transport have considerable effect on the performance of the system. Needless to say, such findings support the lean approaches can be adopted by using such simulation models.
On the other hand, one of the basic objectives of any port operator must be to create a sustainable environment. To reach such an objective and minimize the damage made on the environment, any port is to minimize the activities polluting the atmosphere. This could be possible by using environment-friendly equipment. The SSG's and RTG's used at container terminals are mostly operated by electric power, whereas the MTT's used at internal transport are generally motor vehicles. Reaching the optimal number of equipment at port operations minimizes the damage made on the environment this means that the number of the MTT's is to be optimal. Simulation modeling is one of the most proper means of achieving the optimum in this regard.

We only focused effectiveness of the container terminal in terms of lean dimension and cargo handling operations in terms of the green dimension. Further studies should cover the other components of the lean and green dimension in order to increase the efficiency of the current model.

References

http://www.turklim.org